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Abstract
When searching the space of possible plans for
combined planning and scheduling problems we
often reach a local maximum and must either
backtrack or otherwise modify the plan to make
further progress. Occasionally, we can make
large steps in the search space by aggregating
constraints. Our techniques improve the
performance of our planner/scheduler on real
problems.

Introduction
This paper describes an approach that can improve search
in the plan space. This is achieved by “jumping” within the
search space by using an aggregation technique. Additional
costs of the technique include the overhead involved in
reasoning about the aggregation. Previous work in the form
of macro operators and clustering addresses the problem of
deciding on an appropriate collection of activities,
heretofore referred as an aggregation. We apply a simple
heuristic technique to gather the aggregation and reason
about the aggregation as a single unit. We claim that our
reasoning techniques for a given aggregation facilitate a
sound and complete local search.

Board-Laying: an Analogy of Aggregation
Consider searching the space of plans, where a plan
consists of a collection of activities possibly related to one
another with temporal constraints as in Figure 1.
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Figure 1  A plan consisting of two activities related to
each other via a temporal constraint.

Consider that each activity also has resource and state
constraints or reservations (Figure 2).
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Figure 2  Reservations of activities on a shared resource

We consider a violation of either a temporal constraint or a
reservation a conflict. If we start with a plan that contains
conflicts of temporal constraints and reservations, we
might decide to repair the temporal constraint conflicts and
then the reservation conflicts. When we have repaired all
of the temporal constraint conflicts, we have climbed a hill
to a certain point, where hill climbing is seen as reducing
conflicts. (Note: this is the dual of the “gradient descent”
analogy in which valleys are more optimal than hilltops.) If
we have no other temporal constraint conflicts, then we
would attempt to resolve the reservation conflicts, but it
may be that resolving a reservation conflict implies causing
temporal constraint conflicts. In this case, we have reached
a local maximum—in the sense of hill climbing, we have
reached a hilltop, as in Figure 3.

One option is to simply descend the hill and solve the
reservation conflicts, and then re-solve the temporal
constraint conflicts. A planner that searches completely
will have no trouble with this as because all options are
considered, but most real domains we face have too many



options, which leads to an impossibly long search.
However, if we employ local search techniques, we may
find ourselves descending and ascending the same hill,
making no progress toward a global solution.
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Figure 3  Reaching a hilltop in the search of the plan space

What we really want is to move from one hilltop to other
local hilltops without descending. This is advantageous in
that we know that we are not ascending the same hill and
that we continue the search “up”. One way of enabling this
sort of operation is to reason about collections of activities
instead of individual activities. This allows us to avoid
some of the descending associated with reasoning about
individual activities. In this sense, aggregation is
equivalent to laying boards from one hilltop to nearby
hilltops, as in Figure 4.
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Figure 4  Avoiding backtracking while achieving a less-
conflicting plan using board laying

Unfortunately, board-laying is not free. We must construct
a board i.e. we must reason about aggregations of activities
with respect to shared states and resources as well as
temporal constraints.

Our criterion for inclusion into an aggregation is
motivated by the structure of problems presented by
modelers to our planner/scheduler: ASPEN (Rabideau, G.,
Knight R., Chien S., Fukunaga A., Govindjee A.). Often, a
complex activity is modeled as a collection of simpler
activities related to each other via temporal constraints.
Therefore, we first choose an activity that has a reservation
violation, and then we simply gather associated activities
by calculating the connected component of the original

activity in the temporal constraint network. This takes
advantage of the intent of the modelers in that we assume
that required activities to satisfy temporal constraints will
need to be considered while satisfying resource and state
constraints. Obviously, if this is not the case our
aggregation criterion will not produce helpful collections.
Therefore, we make no claims as to the appropriateness of
our aggregation technique—we only claim that it is
justifiable given the models actually produced for domains
without respect to any particular solution technique.

To summarize the concept and issues of aggregation,
we believe that reasoning about collections of activities (as
opposed to individual activities) is helpful in finding a
solution to a combined planning/scheduling problem. We
believe this is due to the increased complexity introduced
by the backtracking required for reasoning about individual
activities.  To avoid this, we will collect a group of
activities that are related to each other with temporal
constraints and then attempt to schedule the entire
collection at once. In a sense, we assume that decisions
concerning the temporal constraints among members of the
collection will hold even when shifted “lock-step” in the
schedule either forward or backward in time. Note that
although research concerning flexible intervals between
members of the collection might be fruitful, it is left as
future work.

Given that we have chosen a collection of activities,
does our technique: 1) improve on backtracking techniques
and 2) improve search on any reasonable domain? Our
empirical analysis compares our technique with a
technique that performs no aggregation and thus must
backtrack (answering 1), and we use domains from space-
exploration (answering 2).

Reasoning about Collections of Activities
Consider the task of scheduling interdependent sets of
activities in a combined scheduling/planning problem. This
problem is an important aspect of solving combined
planning and scheduling problems. In many approaches to
combined planning and scheduling, one alternates between
finding activities to satisfy pre- and post-conditions
(planning) and finding temporal assignments and resources
for those activities (scheduling). Complex activity
placement is also an important component of many
scheduling problems, as finding temporal assignments for
complex activities can be computationally challenging.
This work advances the approach of moving collections of
activities whose temporal relationships among themselves
are fixed. We proceed by describing our motivation,
defining the problem, and describing the solution. Finally,
we present empirical evidence in favor of our technique.

We assume that we have already gathered activities
into an aggregate, as described earlier. We explicitly
represent interactions between the activities, or more



specifically, interactions between the constraints on shared
states and resources.

For example, consider a pair of activities that affect a
battery (see Figure 5). The first activity a1 uses 10 amp-
minutes, while the second activity a2 restores 10 amp-
minutes. If we schedule a1 individually, we find no
intervals that will not cause an over-subscription of the
battery, because activity a3 has already fully depleted the
battery by the end of the current schedule. But, if we
schedule these together, we find placements that are valid.
The positive effect a2 has on the schedule makes up for
a1’s usage. We wish to handle this sort of constraint-
interaction for shared states and resources.
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Figure 5 Battery interaction example

Empirical Evaluation
In our empirical analysis we use four models (and
corresponding problem set generators): 1) the EO1
spacecraft operations domain, 2) the Rocky-7 Mars rover
operations domain, 3) the DATA-CHASER shuttle
payload operations domain, and 4) the New Millennium
Space Technology Four landed operations domain.

Within each model and corresponding problem set, we
generate random problems that include a background set of
fixed activities and a number of movable activity groups.
The activity groups are placed randomly. The goal is to
minimize the number of conflicts in the schedule by
performing planning and scheduling operations.

To solve each problem, we use the ASPEN
(Automated Scheduling and Planning Environment)
system using an “iterative repair” algorithm, which
classifies conflicts and attacks them each individually
(Rabideau, G., Knight R., Chien S., Fukunaga A.,
Govindjee A. 1999). Conflicts occur when a plan
constraint has been violated; this constraint could be
temporal or involve a resource or state timeline. Conflicts
are resolved by performing one or more plan modifications
such as moving, adding, or deleting activities. The iterative

repair algorithm continues until no conflicts remain in the
plan, or a timeout has expired.

The planner/scheduler entertains least-conflicting
placements when moving activities. In the control trials the
planner/scheduler does so using by considering singleton
activities. We dub this the atomic technique.  In the
experiment trials the planner/scheduler is using our
aggregation method to compute valid placements for
collections of activities.  In all cases for each domain, both
trials are using the same set of heuristics at all other
choice-points (e.g., selection of a conflict or activity group
to attempt to repair, where to place within computed valid
intervals, etc.).  Note that simple (atomic) operations are
available in all domains.  We now briefly describe each
domain including information on the types of activities and
resources modeled, what the activity groups are, and how
they are interdependent.

EO1 Domain
The EO1 domain models the operations of the New
Millennium Earth Observer 1 operations for a two-day
horizon.  It consists of 14 resources, 10 state variables and
total of 38 different activity types. Several activity groups
correspond to activities necessary to perform different
types of instrument observations and calibrations. The
activity groups range in size from 23 to 56 activities, many
of which have interactions. For example, taking an image
of the earth requires fixing the solar array drive to avoid
blurred images. The high-level observation activity group
includes both commands to fix the SAD and take the
image.

Each EO1 problem instance includes a randomly
generated, fixed profile that represents typical weather and
instrument pattern. Each problem also includes 8 randomly
placed instrument requests for observations and
calibrations.

Rocky-7 Domain
The Rocky-7 Mars rover domain models operations of a
prototype rover for a typical Martian day.  It consists of 14
shared resources, 7 state variables and 25 activity types.
Resources and states include cameras (front, rear, mast),
mast, shovel, spectrometer, solar array, battery, and RAM.
There are four activity groups that correspond to different
types of science experiments: imaging a target, digging at a
location, collecting a spectrometer reading from target, and
taking a panoramic image from a location. Activity group
size ranges from 8 to 17 activities. Members in activity
groups have positive resource interactions, e.g. opening the
aperture for the camera enables subsequently taking a
picture.  Activity groups also have negative interactions,
e.g. several member activities using the onboard buffer.
Rover problems are constructed by generating four
experiments and randomly generating parameters for the
experiments (such as target locations).



New Millennium Space Technology Four
Landed Operations Domain
The ST4 domain models the landed operations of a
spacecraft designed to land on a comet and return a sample
to earth. This model has 6 shared resources, 6 state
variables, and 22 activity types.  Resources and states
include battery level, bus power, communications, orbiter-
in-view, drill location, drill state, oven states for a primary
and backup oven state, camera state, and RAM.  There are
two activity groups that correspond to different types of
experiments: 1) mining and analyzing a sample, 2) taking a
picture.  Activity group sizes range from 5 to 10.  As in the
rover domain, activities interact positively and negatively.

Each ST4 problem instance includes a randomly
generated, fixed profile that represents communications
visibility to the orbiting spacecraft.  Each problem also
includes five mining and two picture experiments (each
randomly placed.)

DATA-CHASER Domain
The DCAPS domain models operations of a shuttle science
payload that flew onboard Space Shuttle Flight STS-85 in
August, 1997.  It consists of 19 shared resources, 25 state
variables, and 70 activity types.  Resources and states
include shuttle orientation, contamination state, 3 scientific
instruments (doors, relays, heaters, etc.), several RAM
buffers, tape storage, power (for all instruments/devices),
and downlink availability.  There is one type of activity
group corresponding to one experiment for each of the 3
scientific instruments.  This activity group consists of 23
activities.  As with the other domains, activities in this
activity group interact positively and negatively.

Each DCAPS problem instance includes a randomly
generated, fixed profile that represents shuttle orientation
and contamination state.  The number of randomly placed
experiments ranges from 2 to 20 based on the fixed profile
for the given problem instance.

For each domain, we run 20 random problems for both the
control (atomic) and the experimental techniques. Using
the atomic technique, the problems are intractable within
reasonable time bounds. We postulate that this is because
the distance in terms of sub-optimal moves from one local
optima to the next is O(n) and the space to be searched is
O(mn) where n is the number of activities in a movable
collection and m is the number of possible locations given
by a calculation of legal intervals for an individual activity.
For example, in the EO1 domain, n ranges from 23 to 56;
in the Rover domain, n ranges from 8 to 17.

However, we discover that our board-laying technique
fairs somewhat better (see Table 1.)

EO1 Rocky 7 DCAPS ST4 total
board
laying

149/400 390/400 387/400 243/400 1169/
1600

Table 1  Number of Problems Successfully Planned

Also, we see that as a function of time, our board laying
technique outperforms the atomic technique for each
domain (see Figure 6, Figure 7, Figure 8 and Figure 9).
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Figure 6  Conflict Reduction for EO1
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Figure 7  Conflict Reduction for Rocky 7



Conflicts over time for DCAPS

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6

Time, in seconds

Board Laying
Atomic

Figure 8  Conflict Reduction for DCAPS
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Figure 9  Conflict Reduction for ST4

Related Work
There are a number of related systems that perform both
planning and scheduling.  IxTeT (Laborie, P., Ghallab, M.
1995) uses least-commitment approach to sharable
resources that does not fix timepoints for its resource and
state usages.

HSTS (Muscettola, N. 1993) enforces a total order on
timepoints affecting common shared states and resources,
allowing more temporal flexibility.  We believe that our
technique is applicable in this case at a greater
computational expense (while still being polynomial), and
future research should address this issue.

Both IxTeT and HSTS are less committed
representations than our grounded time representation and
this flexibility incurs a greater computational expense to
detect and/or resolve conflicts.

O-PLAN (Drabble, B., and Tate A. 1984) also deals
with state and resource constraints.  O-PLAN’s resource
reasoning uses optimistic and pessimistic resource bounds
to efficiently guide its resource analysis when times are not
yet grounded.  Like ASPEN, O-PLAN also allows multiple

constraint managers which would enable it to perform
general reasoning when times are unconstrained and more
efficient reasoning in the case where all timepoints are
grounded.

SIPE-2 (Wilkins, D., 1998) handles depletable/non-
depletable resource and state constraints as planning
variables using constraint posting and reasons at the same
level of commitment as IxTeT.
(Cesta, Oddi S., and Smith S. 1998) apply constraint-
posting techniques to satisfy multi-capacitated resource
problems at the same level of commitment.
Depletable/non-depletable resource constraints are easily
transformed to multi-capacitated resource constraints.
None of these systems generally consider aggregate
operations in their search space.

Conclusion
This paper has described the use of board laying
techniques to improve the efficiency of planning and
scheduling sets of interdependent activities.  We show
empirically that our board laying search method
outperforms the alternative approach of using singleton
operations on problems from space exploration domains.
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