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Outline of Talk

I Motivating NASA Missions
mWhy Safe Learning
® Work at JPL In Adaptive Problem Solving




Motivation

@ NASA wants to explore hostile,
unpredictable environments

@ Ambitious Science Goals require survival
for extended durations (up to decades)

M In order to meet these mission
requirements adaptation iIs required!




A Motivating Example




Unknowns and

Impact on

Operations

@ Thickness and composition of ice-cap

energy expended to penetrate
surface

data volume and type collected

ability to communicate while
below cap (reliability, rate)

effectiveness of melting strategies
(fast v. slow)

@ Properties of underground ocean

energy and time cost to
move/explore

effectiveness of sensors (reliability,
range, discriminability)

ability to communicate
predictability of above




Comet Lander

Examples of Unknowns and Impact on Planning
— Hardness of surface
@ time to drill to specified depth
@ power consumption of drilling activities
— Outgassing properties of comet under solar illumination
@ affects lighting for pictures
@ may affect communications links



Mars Robotic Outpost

» Long-term environmental
changes (general warming
trend)

* Medium-term
environmental changes
(seasons)

» Shorter-term
environmental changes
(storms)

» Hardware degradation

« Communications
performance

» Mobility

» Sensor effectiveness

Adaptive, self-organizing Exploration Agents
» conduct extended (decades long) environmental and geological Martian survey




Learning is Key

@ To adapt performance to unknown environment
— For survivability

— For efficient operations
@ unknown effectiveness of operations

@ To adapt to changing environment

— Climate, seasons

— Shorter term variations (storms, day/night)
@ To adapt to hardware degradation

— Even more important for swarms
@ role assignment




Safe Learning Is Key

@ Flight Project Community is very risk averse
— Some reward for accomplishing more science
— Huge penalty for loss of mission

M Missions represent enormous investment
— Smaller missions $300M range
— Larger missions $1B range
— All represent ~10 year investment of institution
(conception to completion of operations)
@ Decision to use technology is based on
— Galin from technology use

— Risk from technology use (mission loss, cost,
schedule)!




Important Classes of Learning

@ Off-line
— Train on large datasets off-line to optimize eventual on-line
performance
@ Requires data (simulator)
@ How to get training set, what if training set not realistic
@ Validate performance on dataset, realism of dataset
@ On-line
— Learn “on the fly”
@ Can adapt to unpredicted variations

@ Can learning keep up with variation rate (learning ~ variation rate
mismatch)

@ Validate learning algorithms reliability!
® Hybrids possible
— On-line adapt to strategies learned off-line
@ Validate off-line algorithm performance and on-line selection




Summary - Motivation

@ NASA has critical need for learning
systems

@ New classes of missions are enabled by
effective, safe learning

H Timescale of these missions is such that
the technology must be mature in ~2005
timeframe

— Tremendous opportunity for these
technologies and for NASA




An Example of Learning at JPL.
Adaptive Problem Solving as

Stochastic Optimization




Adaptation for Autonomy

@ Cannot construct optimal control strategy for
autonomous spacecraft before mission
— Knowledge about the spacecraft environment is required

— Domain shift or unknown situations may occur during
mission (e.g., changing environment, spacecraft
degradation, failures, ...)

# Adaptive problem-solving enables self-modification
of the control strategy based upon environmental
feedback

@ Two parts of adaptation in stochastic environment:
— generation of candidate control strategies
— evaluation of control strategies




Stochastic Optimization

@ Gradients can provide valuable
Information to guide search In strategy

optimization space

Search space is space of
control strategies for
problem-solver

Each point in the space is a
specific search strategy
The expected utility of a
point can only be estimated
stochastically because we
can only score a strategy on
a specific problem and
expected utility is average
score over an unknown
problem distribution




Stochastic Optimization

@ Knowing surface of search space could
help decide search algorithms

@ Can local search techniques work?
— How well do they perform?

— What are the characteristics (smoothness,
local maxima, ...) of the surface defining the
search space?

— How do automated approaches compare to
human expert best solutions?




Generic Planning System

@ Adaptive problem solving is applied to the
generic planning system ASPEN.

— Automatically generates a sequence of activities
to accomplish input goals.

— Attacks individual conflicts (related to resources,
states, or activity parameters) using iterative
repair.

— Control strategy determined through a set of
heuristics which chooses the modifications taken
to repair conflicts at certain points in the search
(“choice points™)




Strategy Vector

For each iteration of repair, ASPEN makes choices about what repairs to
perform. The strategy vector is a set of weights which determines which
heuristic to choose stochastically at each choi ce p0| nt.

Choice points: Strategy Heuristics:
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Portfolio Synergy

P(A or B)
P(A)+P(B)

Probability of Solution
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Complementary portfolio algorithms increase
Portfolio robustness.




Adaptive Problem Solving

Set of control strategies

Statistical Hypothesis
(Strategy) Ranking




Selection Procedure

Collect sample for
comparison for h, h,

ASPEN
Update parameter

Problem 1
estimates in modd.




Decision Criterion

Probably Approximately Correct (PAC) Reguirement:
Hypothesis estimated to be the best must be within some
user-specified constant e distance from the true best
hypothesis with probability 1 - d.

To bound the overall error, we

must bound the sum of the Pr gj U(h)-U(h,)> e)g <d
errors for the k-1 comparisons: = u

Given the normality assumption, the
probability of incorrect selection for a
pair-wise comparison, a;, IS:

We can use this estimate to determine
the number of samples needed to
achieve a specified error bound:




Search Procedure

At each step, hypothesis hi is the starting point for step function fj,
which is used to generate the next set of hypotheses to evaluate.




Search Algorithms

M Local Beam Search:
— Select top b hypotheses using PAC with confidence ¢
— Generate next set of hypotheses in the neighborhood of
these hypotheses
M Genetic Algorithm:

— Stochastically choose parent hypotheses, ranked using PAC
requirement, based on ranking

— Using crossover, mutation, and reproduction with given
probability, generate offspring from the parents

@ Random Search:
— Hypothesis is a random point from the search space




Earth Orbiter-1

@ Science Activities M Resources

— Imaging surface targets using
advance multi-spectral — Solar array

imaging device. — Aperture cover

— Calibration S
B Engineering activities — Frocessor

locking solar array drive (SAD) — Memory

Uplink data — Wideband recorder
Downlink data processor

pointing imaging device Batt
maneuvering/rolling — ety
spacecraft — Heater

warm-up/turn on thruster — Propellant




Deep Space 4 (CNSR)

@ Sample Activities
Move the drill to the hole
Drill the hole (mining)
Move sample to oven and
deposit
Use oven (bake sample,
take data)

Let oven cool down before
re-use

@ Imaging activities
@ Engineering activities

— uplink from lander to
spacecraft

— compress data in buffer

@ Resources

Comm system

Data Buffer

Battery charge level
Power Level

Drill

Camera (CIVA)
Oven (2) state *
Drill Location
Camera state *
Comm state *

* can be failed




Results

@ Evaluated on three spacecraft models: Earth
Observer 1 (EO-1), Space Technologies Four
Landed Operations (ST-4), Rocky-7 Mars
Rover Domain.

EO-1 Local Beam Search EO-1 Genetic Algorithm

0 5 10 15 20 25 30 35
0 5 10 15 20 25 30 35 Search lterations

Search lterations

128% improvement in high 147% improvement in high
score from original hypothesis score from original hypothesis




Machine vs. Human Expert

Histogram of Random Samples Histogram of Random
For EO-1 Domain | Samples For Comet Lander
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Arrows represent human expert strategy
Notice that in both cases, random sampling found higher
scoring hypotheses than the expert with 100 samples




Smoothness Property

Gandic Serch

Mean

Sd
Dev

00134

00033

Rougher, less continuous

00145

00244

The mean shows the
average distance between
two steps of the search,
which is a measure of the
smoothness of the step
function.

Smoother, more continuous




Valley Hypothesis

Beam search walk for EO-1 Genetic search walk for EO-1

1 5 9 13 17 21 25 29 33 37 41

Valley hypothesis the human expert hypothesisisin alarge
valley of local minima.




Variable Learning Rates

@ The purpose of dynamic learning rates Is
to search the space broadly at first to find
a good local basin.

@ When a good local basin has been found,
restrict the search to find the local
optimum there.




Learning Rates Application

M Probabillity of accepting a suboptimal step
(step confidence)

— For PAC cool selection confidence
W Step size (exploration)




Cooling Rates

H Intensification/Diversification
— Based on gain from initial step (Tabu)

@ Boltzman Annealing
— Cooling based on temperature analogue

I | CaUChy Comparison of Cooling Functions

Intensification-
— Steeper cooling 5 Solamam
than Boltzman

Cauchy

Temperature
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Local Search

M@ Confidence

@ Boltzman over
different parameters
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Genetic Search

M Different Cooling for
mutation rate

@ Boltzman for varying
parameters

Different Cooling functions for
Mutation0.2
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Different Search Parameters
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Learning Rates

M Best performing
algorithms
comparison

— Genetic Algorithms
perform best

— Enable learning to
occur in roughly half
the samples with
Boltzman on mutation
rate

0.64

0.63
§O.62
£0.61

£ 0.6

20.59
0.58
0.57

Different Step Functions - Static
Search and Best Performance

— GA-No Delta

GA-Boltzmann-
Mut0.2

t0.
J — LS-No Delta

LS-Boltzmann
Conf0.6

100 600 1100, 1600 2100 2600




Current Work

@ Continue to perform landscape analysis

— measure, characterize epistasis of search
space, covariance for dimensions

— number of local maxima, average distance
between local maxima

— correlation distance function
M@ Include gradient searches

@ Use meta-level learning to inform
strategy search techniques.




Current Work 2

® Implement and test alternate decision
criteria that do not assume normal
distribution of hypothesis utilities:

— ChebyshevVv’s inequality
— Chernoff bounds
— Bernstein’s inequality




Conclusions

m Safe Learning key to enabling new classes of space
exploration missions

& Presented specific work in using:
— local search for stochastic optimization
— Applied to choosing heuristics for planner

W Results:
Improved on human expert solutions in two domains

Showed smoothness of search space using two different
step functions

lllustrated “valley hypothesis,” human expert hypothesis
actually lie in large local minimum

Preliminary results that varying learning rate can improve
performance




