
Variable-Selection Heuristics in Local Search for SAT

Alex S. Fukunaga�

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive, MS 525-3660
Pasadena, CA 91109-8099

alex.fukunaga@jpl.nasa.gov

July 1, 1997

Abstract

One of the important components of a local search strategy for
satisfiability testing is the variable selection heuristic, which
determines the next variable to be flipped. In a greedy local
search such as GSAT, the major decision in variable selection
is the strategy for breaking ties between variables that offer the
same improvement in the number of unsatisfied clauses. In
this paper, we analyze a number of tie-breaking strategies for
GSAT and evaluate the strategies empirically using randomly
generated 3-SAT instances from a hard distribution of random
instances. We find that the property of fairness, which was
proposed in the literature as being the critical property of a
successful variable strategy, is not a sufficient property, and
show that randomness plays a significant role in the success of
variable selection heuristics.

1 Introduction

Local search algorithms for propositional satisfiability such as
GSAT [10] have received much attention in recent years because
of the discovery that it is possible to find solutions to difficult
problems which are much larger than those which are solvable
with conventional, systematic approaches such as the Davis-
Putnam procedure [3], at the cost of completeness.

The basic schema for a local search algorithm for satisfia-
bility testing is the following: Initially, a complete assignment
of truth values to variables is generated randomly. Then, the
truth values of the variables are repeatedly flipped in order to
find a satisfying solution, usually applying some hill-climbing
technique that tries to minimize the number of clauses that
are left unsatisfied. Since hill-climbing approaches are sus-
ceptible to getting stuck at local minima, various heuristics for

�Copyright c
1997, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved

escaping local minima are applied to resume progress once the
hill-climbing search becomes stuck.

The best-known local search algorithm for satisfiability test-
ing is GSAT [10], shown in Figure 1. A greedy hill-climbing
procedure is repeatedly applied to a randomly generated ini-
tial assignment. In order to escape local minima, after each
MAXFLIPS flips, a new random assignment is generated, and
the greedy-hill climbing procedure begins again. This is re-
peated MAXTRIES times (or until time runs out).

A distinctive feature of GSAT is the particular method by
which a variable is chosen to be flipped. In the original formu-
lation of GSAT, Selman et al. specified that “... the variable
whose assignment is to be changed is chosen at random from
those that would give an equally good improvement.” Their jus-
tification for this choice was that “such non-determinism makes
it very unlikely that the algorithm makes the same sequence of
changes over and over.” [10]. However no empirical support
of this conjecture was presented.

Gent and Walsh [4, 6] later questioned the importance of ran-
domness in the method of picking the variable to be flipped, and
presented experimental results using 50-100 variable random
problems, as well as N -queeens problem instances that showed
that randomness is not essential in the variable picking proce-
dure. In addition, Gent and Walsh concluded that the property
of fairness in variable picking is important. (According to [6],
a procedure is fair if “..it eventually picks any variable that is
offered continually”).

This work was originally motivated by our experience when
we implemented a GSAT engine. When testing our code using
some standard benchmarks, we were surprised to find that our
implementation was obtaining consistently worse results than
those reported in the literature, and we discovered that the only
significant difference between our implementation and that of
others was our use of a fair but non-random variable selection
strategy.1

1This was the FIFO strategy, described in Section 2.

1



GSAT

Input: set of clauses �, MAXFLIPS, and MAXTRIES
Output: a satisfying truth assignment of �, if found
for i := 1 to MAXTRIES
T := a randomly generated truth assignment
for j := 1 to MAXFLIPS

if T satisfies � then return T

p := Choose a propositional variable to flip that
maximizes the increase in total number of clauses
of � satisfied by T .

T := T with the truth assignment of p reversed
end for

end for
return failure (no satisfying assignment found)
end

Figure 1: The GSAT Procedure.

In this paper, we revisit the variable selection method used
in GSAT and experimentally evaluate a number of alternative
heuristics for picking variables. We show that randomness plays
a much more significant role than indicated by the conclusion of
[4, 6]. The rest of the paper is organized as follows. In Section
2 we present several variable picking heuristics for GSAT. An
empirical comparison of these methods is presented in Section
3, and Section 4 presents an analysis of the scaling behaviors of
these empirical results. Section 5 concludes with a discussion
of our results.

2 Variable Selection Heuristics

A variable selection heuristic is the method used to choose the
variable to be flipped at every iteration of a local search algo-
rithm for satisfiability. In this paper, we restrict our attention
to the class of algorithms based on greedy hill-climbing such
as GSAT (Figure 1), which chooses a variable that leads to the
greatest improvement in the number of unsatisfied clauses.2 In
this framework, the main remaining design issue is the heuristic
used to break ties among variables that yield the same improve-
ment when flipped.

A naive implementation of GSAT would, at every iteration,
compute the change in the number of clauses satisfied if each
variable were flipped. Since this would iterate through each
variable and each clause, the complexity of each iteration of
such an implementation would be O(NM), where N is the
number of variables, and M is the number of clauses. How-
ever, efficient implementations of GSAT use data structures that

2If it is not possible to improve the number of unsatisfied clauses, then a
sideways move that keeps the number of unsatisfied clauses constant is chosen.

incrementally update this information, resulting in significant
speedup. Since the complexity of various tie-breaking heuris-
tics depends on the implementation of these data structures, we
describe our incremental updating mechanism below.3

We define the gain of a variable v to be the net decrease in
the number of unsatisfied clauses if v were to be flipped. A
gain bucket is a set of variables that have the same gain. A gain
table is an array of gain buckets, sorted in descending order of
their gains. That is, the gain table groups variables according
to their gains.

We now outline the incremental update procedure used when
a variable is flipped. We say that a variable v is critical with
respect to clause c if flipping v would result in either c changing
its state from satisfied to unsatisfied, or from unsatisfied to
satisfied. For each variablev, a list of all clausesCv that contain
the variable is stored. When v is flipped, we iterate through
each clause in Cv . For every variable v0 in a clause c 2 Cv,
we incrementally update the gain of v0 (i.e., possibly move the
variable to another gain bucket), if the criticality of v0 changes.
For example, assume we have a clause c = (v0 _ v1 _ v2),
and that the current assignment of the variables is v0 = true,
v1 = false, and v2 = false. At this point, flipping v1 or v2

will not affect whether the clause is satisfied or not; only v0 is
critical with respect to c. Now, suppose v0 is flipped, so that
v0 = false. Then, v0, v1 and v2 all become critical variables,
and the gains of all three variables are increased (since flipping
any one of them next would satisfy the clause). This procedure
is repeated for all c 2 Cv .

This updating procedure takes O(CpvVpc) time, where Cpv

(clauses-per-variable) is the average number of clauses that a
variable appears in, and Vpc (variables-per-clause) is the aver-
age number of variables in a clause. Normally, in experiments
using randomly generated formulas, Cpv is roughly constant
(determined by the critical parameter, clauses to variable ratio
[7]), and Vpc is a fixed number (most commonly, Vpc = 3).
In practice, this is several orders of magnitude more efficient
than the O(NM) naive update procedure, since Cpv and Vpc
are several orders of magnitude smaller than M and N , respec-
tively.

Choosing a variable to be flipped is done by picking the
gain bucket corresponding to the highest, non-empty gain table
entry4, then choosing a particular variable out of this bucket
using one of the tie-breaking strategies described below.

3The terminology used in this paper (i.e., gain, gain buckets, gain tables) is
adapted from the established terminology for analogous data structures used in
local search algorithms for a similar problem domain, hypergraph partitioning
[1].

4An index to the highest non-empty gain table is maintained incrementally,
so finding this entry is a constant time operation.

2



2.1 Tie-Breaking Heuristics

We now describe the tie-breaking heuristics (i.e., strategy for
selecting a variable out of a gain bucket) that were evaluated.
Each of the strategies are evaluated according to their com-
plexity and their fairness. Gent and Walsh [6], proposed that
a strategy is fair “...if it is guaranteed to eventually pick any
variable that is offered continually.” They note that this is a
weak definition, since it allows a variable not to be picked if
it presented, say, only every other time. With respect to the
terminiology used in this paper, we define fairness as follows:

Definition 1 A variable selection heuristic H is fair if the fol-
lowing is true: Given a variable v which is inserted into a gain
bucket b, H guarantees that if b is continually selected as the
highest gain bucket and v remains in b, then v will eventually
be selected (with probability approaching 1).

The Random heuristic uses a gain bucket that is implemented
as an array in which access to any element takes constant time,
and the number of elements in the array is maintained. At each
iteration, an element of the array is picked randomly and chosen
to be flipped. This element is then deleted, and resulting “hole”
in the array is filled in by moving the last nonempty element
of the array into the hole. New elements are inserted into the
first empty element of the array. Thus, insertions and removals
are done in constant time. This is a fair strategy, since the
probability of eventually picking a variable approaches 1 if the
bucket is randomly sampled infinitely many times.

The First-In-First-Out (FIFO) strategy uses a linked list gain
bucket implementation. Variables are inserted at the tail of the
list, and are chosen (removed) from the head of the list, so both
insertion and removal are constant time operations. FIFO is
clearly fair, since a variable that is inserted into a gain bucket
withN variables is guaranteed to be picked after the gain bucket
is chosen at most N + 1 times by GSAT.

The Last-In-First-Out (LIFO) heuristic uses a linked list gain
bucket implementation. Variables are inserted and removed
from the head of the list. Both insertion and removal take
constant time. Intuitively, this is a poor strategy, since there is
too much locality in the choice of variable – it is possible to
cycle among a small subset of variables at the head of the gain
bucket list, while other variables are continually “stuck” near
the tail of the list and never chosen. LIFO is not a fair strategy,
because even if a variable v is offered continually, it is possible
to never pick v if at every step a new element is added to the
gain bucket.

3 Experimental Results

The tie-breaking heuristics described above (Random, FIFO,
LIFO) were evaluated experimentally using formulas gener-
ated randomly using the fixed clause length model [7]. Three

Parameters Number Solved
Vars MAXFLIPS MAXTRIES Random FIFO LIFO
50 250 10 246 232 23

100 500 50 174 138 0
150 1500 100 170 84 0
200 2000 250 144 58 0
250 2500 250 130 37 0
300 6000 250 152 12 0
400 8000 450 83 2 0
500 10000 1000 18 1 0

Table 1: Performance of the Random, FIFO, and LIFO variable selection

heuristics on difficult random 3-SAT instances. The number of instances (out

of 500) that were solved by each strategy given a computational resource bound

of MAXTRIES and MAXFLIPS is shown above.

parameters are controlled: the number of variablesN , the num-
ber of literals per clause k, and the number of clauses M . For a
given N and M , a random problem instance is created by gen-
erating M clauses of k variables, where each clause contains
k distinct variables from N which are negated with probability
0.5. 500 instances of 3-SAT (k = 3 variables per clause) prob-
lem instances were generated, where the R = M=N , the ratio
of the number of clauses to the number of variables was fixed at
4.3. As shown in [7], this generates a distribution of instances
that are difficult to solve. Problems of up to 500 variables were
used.

For each randomly generated problem, GSAT was run using
each of the tie-breaking strategies, where each run consisted of
up to MAXTRIES iterations of MAXFLIPS flips (the solution
was completely randomized after every MAXFLIPS flips).

Table 1 shows the results of this experiment. The number
of instances for which satisfying assignments were found using
each tie-breaking strategy is shown. Note that not all of the
problems in the randomly generated set are satisfiable; accord-
ing to previous studies [7, 2], approximately half of the 500
instances are expected to be satisfiable.5

As predicted, the LIFO strategy performed very poorly. Al-
though the FIFO strategy was competitive with the randomized
strategies for the smaller problems (50 and 100 variables), it
performed relatively poorly on the larger problem instances.
Overall, the Random strategy performed significantly better
than the two non-random strategies.

Next, we tested the tie-breaking heuristics in the context of
a slightly different local search, GSAT with random walk [8].
This is a simple extension of GSAT which works as follows:

� With probability p, pick a variable occuring in some un-
satisfied clause and flip its truth assignment.

� With probability 1�p, follow the standard GSAT scheme,

5It would be possible to run a efficient systematic procedure such as Tableau
[2] to determine exactly how many of the smaller instances are actually sat-
isfiable; however, this was not currently feasible for a large set of the largest
problem instances.

3



i.e., pick randomly from the list of variables that gives the
largest decrease in the total number of unsatisfied clauses.

GSAT with random walk has been shown to be significantly
more effective than GSAT alone in a number of problem do-
mains [8].

Table 2 shows the results of this experiment (using the same
set of random instances as for the previous experiment). The
number of instances that were solved using each tie-breaking
strategy is shown. The probability of a random walk being
taken, p, was set to 0.5.

Overall, the performance of GSAT with random walk was
significantly better than without random walk. Interestingly, the
performance of the FIFO and LIFO strategies were significantly
enhanced in the context of random walk. In fact, FIFO seems
to be the best performer overall. Although the performance of
LIFO is still significantly worse than the other strategies, its
performance is vastly improved compared to the LIFO without
random walk.

Parameters Number Solved
Vars MAXFLIPS MAXTRIES Random FIFO LIFO
50 250 10 324 331 303
100 500 50 253 246 225
150 1500 100 245 251 227
200 2000 250 224 235 200
250 2500 250 243 267 201
300 6000 250 244 256 210
400 8000 450 199 235 145
500 10000 1000 78 103 40

Table 2: Performance of the Random, FIFO, and LIFO variable selection

heuristics on difficult random 3-SAT instances, when combined with the random

walk strategy of Selman and Kautz. The number of instances (out of 500)

that were solved by each strategy given a computational resource bound of

MAXTRIES and MAXFLIPS is shown above.

For comparison, we implemented a version of Walksat, [9],
which has recently been shown to be a promising alternative to
GSAT on a number of problem domains. The basic iteration of
Walksat is implemented as follows:

� Randomly pick a clause that is not satisfied by the current
assignment.

� Pick (using a greedy heuristic with probability p, or at
random with probability 1�p) a variable within that clause
to flip.

Table 3 shows the result of running Walksat on the same set
of random instances as for our previous two experiments with
GSAT. Following previous researchers [9], the probability of
using a greedy heuristic to choose a variable once a clause had
been chosen was set to 0.5. Overall, the data shows that the
performance of GSAT with random walk with a good choice
of tie-breaking strategy is competitive with that of Walksat for
this class of random formulas.

Parameters Number Solved
Vars MAXFLIPS MAXTRIES Walksat
50 250 10 281

100 500 50 211
150 1500 100 202
200 2000 250 190
250 2500 250 218
300 6000 250 255
400 8000 450 209
500 10000 1000 92

Table 3: Performance of the Walksat algorithm on our set of hard 3-SAT

random instances The number of instances (out of 500) that were solved by each

strategy given a computational resource bound of MAXTRIES and MAXFLIPS

is shown above.

Finally, we evaluated some hybrid selection strategies, in
which randomness was added to the non-random FIFO/LIFO
strategies. The FIFO-Random (FR) Hybrid variable selection
strategy works as follows:

� With probability p, select a random variable from the best
gain bucket.

� With probability 1�p, select a variable from the best gain
bucket using the FIFO strategy.

Likewise, the LIFO-Random (LR) Hybrid strategy applies a
random selection heuristic with probability p and a LIFO strat-
egy with probability p. These hybrid strategies were evaluated
with values of p ranging from 0.1 to 0.75, in the context of
the standard GSAT algorithm (i.e., without random walk). Ta-
ble 4 summarizes the results of this study. As expected, the
performance of the hybrid strategies is similar to that of their
corresponding non-random strategies (FIFO, LIFO) at low val-
ues of p, and performance improves as p is increased, and
becomes competitive with the Random selection strategy.

4 Analysis of the Scaling Behavior

An interesting observation from the experimental results above
is that the difference in the performances of the variable se-
lection heuristics scales nonlinearly. That is, the relative dif-
ferences in the performances increases as the problem size in-
creases (rather than remaining a constant factor difference). To
understand this phenomenon, we analyze the scaling behavior
of the movement of variables between gain buckets in the gain
table when a single variable is flipped.

As described in Section 2, flipping a single variable v results
in the potential update of the gain values of each variable in
every clause in each clause containing v. Thus, the flip of a
single variable could possibly result in relatively large changes
in the structure of the gain table, since all variables whose net
gain is non-zero are moved from their current gain bucket to a
new gain bucket.

4



Parameters Number Solved
FIFO-Random Hybrid LIFO-Random Hybrid

Vars MAXFLIPS MAXTRIES FR-0.1 FR-0.25 FR-0.5 FR-0.75 LR-0.1 LR-0.25 LR-0.5 LR-0.75
50 250 10 246 251 255 251 146 196 244 243

100 500 50 169 167 189 182 36 110 156 181
150 1500 100 136 156 166 170 20 91 156 172
200 2000 250 112 126 145 153 9 66 132 150
250 2500 250 85 102 122 136 1 35 101 130
300 6000 250 82 104 134 159 1 47 132 160
400 8000 450 32 46 70 86 0 17 63 94
500 10000 1000 4 9 14 15 0 2 10 20

Table 4: Performance of the FIFO-Random and LIFO-Random hybrid variable selection strategies, for p 2 f0:1; ; 0:25; 0:5; 0:75g on difficult random 3-SAT

instances. (In the table FR-0.1 denotes the FIFO-Random hybrid with p = 0:1, LR-0.5 denotes the LIFO-Random hybrid with p = 0:5, and so on.) The number

of instances (out of 500) that were solved by each strategy given a computational resource bound of MAXTRIES and MAXFLIPS is shown above.

These side effect movements of the variables among gain
buckets can significantly disrupt the FIFO/LIFO orderings in
the gain buckets.

For example, suppose that we are using a FIFO selection
strategy, and a gain bucket g contains variables v1; v2; :::vn
(where v1 was inserted into g first, v2 was inserted second,
and so on). Suppose g is repeatedly offered as the bucket
with the highest gain. If there were no side effects, then the
variables would be selected in the order inserted (v1; v2; :::vn).
However, when side effects are present, then with every flip, it
is possible that some variables are moved from g, and/or some
new variables are added to g. Obviously, the lower the average
number of side effects per move, the more likely it is that g is
undisturbed by a side effect and that the variables are selected
in the original (FIFO) order.

Note that if the number of side effects is large with respect
to the number of variables, then the variable selection heuristic
becomes relatively unimportant – the fixed orderings imposed
by the FIFO/LIFO strategies are irrelevant when a large fraction
of the variables are moving in and out of the gain buckets at
every flip due to side effects. The converse of this observation
is that the fixed orderings (FIFO/LIFO) play a more significant
role when the average fraction of the variables moving due to
side effects is low.

It can be shown that on average, the maximum number of
variables that move between gain buckets when a variable is
flipped is independent of the size of the problem (the number
of variables), and is relatively small for large problems. More
formally:

Claim 1 For the class of random k-SAT instances generated by
the fixed clause length model, the average number of variables
moving between gain buckets is less than k(k � 1)R+ 1.

Proof:
Consider the class of random k-SAT instances generated

using the fixed clause length model (defined in Section 3). Let
v be a variable that is flipped. Let Cv be the set of clauses
that contain v. Each clause has k � 1 variables other than v,

so clearly, the number of variables that move is bounded by
(k � 1)jCv j+ 1.

The expected value of jCv j isM�(k�1=N) = k�M=N =
kR, so the average number of variables that move between gain
buckets is less than k(k � 1)R+ 1.2

This bound of k(k � 1)R + 1 is independent of N . As
the problem size grows (i.e., N increases), the fraction of the
variables that move between gain buckets on each flip (which is
bounded by (k(k� 1)R+ 1)=N ) decreases. For small N , each
flip moves a relatively large fraction of the variables between
gain buckets, compared to large N . This partially explains
why the performance differences between the variable selection
heuristics depends onN : The smallerN is, the more disruptive
each flip is to the gain table structure, and hence, the less
important it is which of the Random/FIFO/LIFO strategies are
being used.

Finally, it is important to note that although the analysis
above uses the terminology introduced in Section 2 (e.g., gain
buckets), the results are independent of the particular imple-
mentation, and apply in general to similar data structures are
used in order to enable the incremental updating of variable
gains.6

5 Discussion

In this paper, we evaluated several tie-breaking heuristics for se-
lecting variables to flip in GSAT. Randomly generated formulas
from a difficult distribution were used to empirically compare
the performances of the strategies.

In the context of standard GSAT (without random walk), we
found that randomized tie-breaking heuristics performed best,
while the FIFO strategy did relatively poorly, and the LIFO
strategy performed very poorly. It is interesting to compare our
results with that of [4, 6], who concluded that “...there is noth-
ing essential about randomness of picking in GSAT (although

6All efficient implementations of GSAT which we are aware of use a similar
incremental updating framework.

5



fairness is important)...”. The poor performance of LIFO (an
unfair strategy) is compatible with these previous conclusions,
and can be attributed to an excessive locality in its selection of
variables. However, our results with FIFO and the randomized
heuristics yield some new conclusions.

For smaller problems of 50-100 variables (the size of the
problems studied in [4, 6]), the fair but non-random FIFO strat-
egy is competitive with the Random strategy in GSAT without
random walk. However, as the problem size increases, the
performance of FIFO becomes significantly worse than that of
Random. We believe that this is because variables are “stuck”
in the FIFO queue too long; the fixed ordering of FIFO is too in-
flexible, and lacks the ability to exploit situations when a more
local choice of variables is useful (i.e., when it is better to pick
variables that are near the tail of the queue). This weakness
of the FIFO strategy becomes increasingly significant as the
problem sizes are scaled up, due to two reasons. First, as the
number of variables increases, the size of the best gain bucket
increases (Gent and Walsh [5] showed that the size of the best
gain bucket scales linearly with the size of the problem). In
addition, we showed in Section 4 that for smaller problem in-
stances, the variable selection heuristic has a less significant
impact than for large problem instances, because each variable
flip has a more significant disruptive effect on the gain table
structure for small problem instances than for large problem
instances.

In contrast to the non-random strategies, the Random strategy
offers the flexibility of choosing any variable from a gain bucket
at any time, although the cumulative probability of choosing a
variable as it is repeatedly offered for selection increases. This
seems to be a desirable behavior which offers a balance between
fairness and locality. An evaluation of some hybrid strate-
gies which combined non-random (LIFO/FIFO) and Random
strategies supports the importance of randomness. Significant
improvements in performance can be seen as the amount of
randomness is increased in these hybrid strategies.

Finally, the results of the comparison of tie-breaking heuris-
tics in GSAT with random walk show that the context in which
a variable selection strategy is evaluated is significant. Sur-
prisingly, the FIFO strategy, which performed relatively poorly
when used with GSAT without random walk, performed very
well when used in the context of GSAT with random walk.
Also, the LIFO strategy performs significantly better with ran-
dom walk than without random walk. We attribute these im-
provements in the performance of the non-random strategies to
the disruptive effect of the random walk on the gain table. That
is, with a high enough probability of a random walk, the ran-
dom flips cause enough movement in the gain table so that the
variables are less prone to becoming stuck in a particular gain
bucket, and the particular choice of variable selection heuristic
(i.e., the choice between FIFO and RANDOM strategies) can
become less important.

Thus, the main result of this paper is empirical evidence

that randomness plays a much more significant role in variable
selection than previously concluded by [4, 6], particularly for
larger problem instances, and that fairness by itself is not a suf-
ficient property for a successful strategy. Our analytical results
offer some insight into why a fair, non-random strategy could
yield results competitive with a random strategy for relatively
small problem instances (such as those used in [4, 6]).

Given these results, we conclude that the use of the Random
strategy, as originally proposed by [10], is indeed a reasonable
choice. Furthermore, this work demonstrates the utility of re-
visiting empirical studies as increased computational resources
become available – by scaling up the studies to study larger
problem instances, it may be possible to gain new insights and
obtain qualitatively different results, as was the case with this
study.

Acknowledgments

The research described in this paper was performed by the
Jet Propulsion Laboratory, California Institute of Technology,
under contract with the National Aeronautics and Space Ad-
ministration. Thanks to Rich Korf for helpful comments on a
draft of this paper.

References

[1] C.J. Alpert and A.B. Kahng. Recent directions in netlist partitioning: a
survey. Integration: the VLSI Journal, 19:1–81, 1995.

[2] J.M. Crawford and L.D. Auton. Experimental results on the crossover
point in random 3-sat. Artificial Intelligence, 81:31–57, 1996.

[3] M. Davis and H. Putnam. A computing procedure for quantification
theory. J. Assoc. Computing Machinery, 7:201–215, 1960.

[4] I.P. Gent and T. Walsh. The enigma of sat hill-climbing procedures.
Research paper 605, Dept. of AI, University of Edinburgh, 1992.

[5] I.P. Gent and T. Walsh. An empirical analysis of search in gsat. Journal
of Artificial Intelligence Research, 1:47–59, 1993.

[6] I.P. Gent and T. Walsh. Towards an understainding of hill-climbing
procedures for sat. In Proc. AAAI, pages 28–33, 1993.

[7] D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of
sat problems. In Proc. AAAI, pages 459–65, 1992.

[8] B. Selman and H. Kautz. Domain-independent extensions to gsat: Solving
large structured satisfiability problems. In Proc. Intl. Joint Conf. Artificial
Intelligence, 1993.

[9] B. Selman, H. Kautz, and B. Cohen. Local search strategies for satisfia-
bility testing. In Second DIMACS Challenge on Cliques, Coloring, and
Satisfiability, 1993.

[10] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard
satisfiability problems. In Proc. AAAI, pages 440–446, 1992.

6


